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Abstract
Diffusion processes in porous materials are often modeled as random walks on
fractals. In order to capture the randomness of the materials random fractals
are employed, which no longer show the deterministic self-similarity of regular
fractals. Finding a continuum differential equation describing the diffusion on
such fractals has been a long-standing goal, and we address the question of
whether the concepts developed for regular fractals are still applicable. We
use the random Koch curve as a convenient example as it provides certain
technical advantages by its separation of time and space features. While
some of the concepts developed for regular fractals can be used unaltered,
others have to be modified. Based on the concept of fibers, we introduce
ensemble-averaged density functions which produce a differentiable estimate
of probability explicitly and compare it to random walk data.

PACS numbers: 05.45.Df, 66.10.Cb, 05.40.Fb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The diffusion of hydrogen in amorphous metals [1] and diffusion of water in biological tissues
[2] are two examples where anomalous diffusion is observed. Such diffusion processes have
been successfully modeled using random walks on fractal structures [3]. These processes are
characterized microscopically by a time-dependent distribution of particles P(r, t), where the
mean square distance 〈r2(t)〉 a particle has moved in time t from its starting point relates to t
by a power law

〈r2(t)〉 ∝ t2/dw , (1)

with dw � 2 denoting the random walk dimension of the underlying fractal structure.
In the literature, many suggestions [4–10] have been given to generalize or develop from

the well-known Euclidean diffusion equation

∂P (x, t)

∂t
= D

∂2P(x, t)

∂x2
, (2)
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where D denotes the diffusion constant, to the case of anomalous diffusion. All these
approaches were at best partially successful [11, 12] because there is no physical theory
for generalizing diffusion equations in terms of the underlying fractal dynamics. As a result,
random walks on them are not naturally described by differential or integral equations. In
[11], we explained that the common way to treat this problem is to look at some type of
averaged quantity. But even the angle-averaged probability, P(r, t), remains a fractal itself,
not amenable to such treatment [4, 5, 11].

Previously [11, 13] we proposed an alternative approach, which left behind heuristic
differential equations to work with fractals directly instead. We used the natural similarity
group in connection with the random walk on the fractal to study probability distributions
and the observation that probability densities on the fractal—like the generalized diffusion
equations cited in [10, 11]—are invariant under a one-parameter group. This allows one to
introduce a similarity variable η as a proper rescaling of r and then to separate the probability
density as a product of one function depending on time t only and another function G depending
on η only.

In [14], we applied this approach to the Sierpinski gasket and plotted G(η). This led
to a family of smooth functions that might be described as a ‘multivalued’ function, plotted
against the similarity variable η all in one graph. The resulting, multivalued G(η) appears like
a muscle-shaped family of well-defined differentiable curves which we called fibers. These
reveal a fully differentiable structure, intrinsic to the random walk behavior, which is not
apparent in the Euclidean space.

However, direct analysis of the Sierpinski muscle is not straightforward. The family of
fibers have subtle wavelike behavior, which presumably have to do with the inherent multiple
connectedness of the fractal. If that is so, a simpler fractal, the Koch curve, should not have
them. This was established in [13]. Unlike the fibers for the Sierpinski gasket, the fibers of
the Koch curve indeed do not oscillate or cross one another.

The Koch curve’s one-dimensional generator ensured that probability at any iteration
depth is easily defined as a function of a single space parameter, �, the chemical distance. All
the dynamical information about the random walk on the Koch curve is given by combining
the analysis of its fibers and the probability density P(�, t). This allows the reconstruction of
P(r(�), t) directly from the fibers. This reconstruction successfully matched the corresponding
values computed from a master equation. All fibers belong to a one-parameter family, which
we found could be fully represented by a single first-order differential equation in η.

How could the Koch muscle give insight into the Sierpinski gasket’s muscle? Clearly,
multiple connectedness needs to be understood. One way to introduce that into this approach
with a single fractal curve is by folding the curve back onto itself. This suggests that there
are two different aspects to multiple connectedness. While there is the obvious back flow of
probability from new directions, there is also something basic to consider first. Unlike the
Koch case, in the case of multiple connectedness one can have more than one � for a given r.
How does this affect the muscle?

How can we generate such curves? Random fractals [15–17] suggest one approach.
Random fractals arise in connection with processes such as diffusion-limited aggregation or in
representing realistic natural structures through iterated function systems or stochastic point
sets generated from probability measures [18]. However, the approach we consider is to expand
the complexity of the Koch analysis incrementally so as not to compromise understanding.
As long as the one dimensionality of the generator is preserved for the random curves, many
of the original characteristics of the analysis will be preserved too.

Random Koch curves introduce new issues. Individual realizations of the curves are not
strictly self-similar. Responding to this leads naturally to the treatment of the ensemble of
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Figure 1. Two different realizations of random Koch curves of depth 4 with L and R generators
chosen with equal probability. Due to the irregular choice of the left or right refinement, the curve
may fold back onto itself.

random Koch curves, which puts a different framework on the muscle approach. We begin by
defining a class of random Koch curves and exploring their basic properties. Then we examine
diffusion processes on this class of curves, applying the idea of fibers and muscles as in
[11, 13].

2. Random Koch curves

To construct a Koch curve [19], we begin with an oriented straight line segment starting at
rl = (−1,−1/

√
3) and terminating at rr = (1,−1/

√
3) as in [13], which we also refer to

as a Koch curve of iteration depth 0. The Koch curve of iteration depth 1, also referred to as
the generator of the Koch curve, is constructed by dividing the line into three equal segments,
adding an equilateral triangle with the middle segment as its base and removing the middle
segment. The orientation of the remaining segments follows the orientation of the one side
removed. Thus a Koch curve generator has four equal segments, each joined head to tail, with
the start and end points oriented as in the original line. As the triangle may point to the left
(L) or right (R) of the original line, there are two possible generators.

For the regular curve, either the left or the right generator is selected in all subsequent
refinements. But what if we choose the generator refinement of each segment according to
some external rule or at random? For instance, we might choose generator R with some
probability pR = q and generator L with probability pL = 1 − q. In the following a generic
random Koch curve of iteration depth M is denoted by CM , where the index M is not used if
unnecessary. Figure 1 shows two different realizations, C4

1 and C4
2 , of random Koch curves of

depth 4 resulting from a refinement with q = 1
2 .

As can be seen from the figure, the self-similarity of a fractal is present only in a statistical
manner. Further, the curves can develop loops in the sense that the random curve may fold
back onto itself. This allows more complicated random walker paths, which can mimic some
aspects of the lacunae of the Sierpinski gasket. However, the equivalence to the lacunae of
Sierpinski gaskets is not complete, as we treat the paths as not connected at crossings in this
paper.

�M is the ensemble of random Koch curves of depth M. |�M | is the total number of

distinct realizations of depth M possible: |�M | = 2
4M −1

4−1 . This is because a curve of depth
M has 4M segments. Thus for each curve C(M−1) ∈ �(M−1), there are 4(M−1)R/L-choices to
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Figure 2. Euclidean distance r versus normalized chemical distance �, both measured with respect
to r0, for 20 realizations of random Koch curves of iteration depth 4 with generators chosen with
equal probability.

generate all the curves of depth M from a given C(M−1). Initially, there are 2 = 2(40) curves of
depth 1. Then by iteration, we find |�M | = 2

∑M−1
m=0 4m

.

3. Random walks on Koch curves

In order to discuss random walk processes on Koch curves, we introduce the unitless chemical
distance λ(M) as the number of segments between r0 and the point in question. Points which
lie between r0 and rr have positive λ(M) and points which lie between r0 and rl have negative
λ(M). Also, we introduce the normalized chemical distance

� = λ(M)

2 · 4(M−1)
. (3)

Note that with this choice made, � becomes independent of the iteration depth. The magnitude
of r, r(�), is the Euclidean distance from the origin.

Figure 2 shows an ensemble of typical r(�)-relations for 20 realizations of random Koch
curves. It is apparent that in the ensemble, there are points with the same normalized chemical
distance � but different Euclidean distance r. An interesting feature is the occurrence of eye
patterns in figure 2. In contrast to the loops in figure 1, which are due to the orientation
of the generators at higher levels, these eye patterns in figure 2 are due to the overlay of
data from different realizations of the random Koch curve. The most striking feature is the
self-similarity of the graph, which can be traced directly back to the structure of the random
generation scheme.

In the following, we use the scaling exponents introduced in [13]. For the normalized
chemical distance we find � = αrdf , with some constant α. This relation is reflected in the
analogous change of variables for a differential equation in [10]. The proportionality constant,
α, plays a key role for the explicit fractal, especially so for the random case.
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Figure 3. For 20 realizations of a random Koch curve of iteration depth 4, the α values are shown
as a function of the normalized chemical distance. Note that the structure present in figure 5 of
[13] reappears here in addition to α-values lying outside the range of the regular Koch curve. This
is expected because the regular Koch curve is a realization of the ensemble.

The normalized chemical distance � serves as the natural independent parameter

α(�) = �

r(�)df
, (4)

which means that there is only one value of α for each �. As there are 4M segments
at depth M, we may determine α(i) for the endpoint of each segment and form the tuple
γCM = (α(1), α(2), . . . , α(4M)) for any realization CM .

Figure 3 shows α obtained from (4) for 20 different realizations of a random Koch curve
of iteration depth 4. It shows that α are still confined to a limited domain, which is larger than
that for the regular Koch curve (see figure 5 of [13]).

4. Ensemble properties of random Koch curves

While the individual realizations of the Koch curve are randomly selected, the union of the
points on all random Koch curves is fully determined. Figure 4 shows 20 realizations to
iteration depth 4 which are overlaid on the same plot. The lines join individual points in each
realization. Even though there are more than 1025 possible realizations at iteration depth 4, the
appearance of the union of the whole ensemble is clearly depicted with only 20 realizations,
indicating considerable redundancy in individual elements of the realizations. The set can also
be produced by a generator where the middle segment of the line is replaced by a diamond
rather than a triangle. The set of all α can thus be determined in principle for the entire
ensemble at any iteration depth.

For the regular Koch curve, the extreme values of α at any iteration depth converge
with increasing iteration depths. We find α

reg
min = 17 × 21−df × 91−df /2 = 0.823387 . . .

and α
reg
max = 47 × 21−df × 307−df /2 = 1.05697 . . . . Surprisingly, the αmin value is already

obtained for iteration depth M = 3, while the αmax value is obtained for iteration depth
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Figure 4. An overlay of 20 random Koch curves of iteration depth 4. Note that already this small
number gives a good idea of the ensemble of all possible random Koch curves.

M = 4. The corresponding echo-point classes include rreg
min = (11/27,−1/

√
3) and rreg

max =
(17/27,−19/(27 · √

3)), respectively. For the random Koch curve αran
min and αran

max might be
expected to fluctuate, depending on the realizations considered. In order to find the extreme
values possible, we created the respective extreme realizations by orienting the inserted
triangles such that their tip was always positioned as far or as close as possible to the origin.
The result was αran

min = 3 × 21−df × 7−df /2 = 0.732987 . . . and αran
max = 5 × 21−df × 7−df /2 =

1.22164 . . . .

5. Dynamics on random Koch curves

In order to describe random walks on the Koch curve, we note that the topology of regular
and random Koch curves is that of a line, given that coincident points are considered distinct.
Thus, the reasoning can proceed similar to that in [13]. The probability density function for
the walk is given by

P(�, t) = t−1/2Gα(η) with Gα(η) = 1

2
√

Dπ
exp

(
− α2

4D
ηdw

)
. (5)

As before, points of the curve are treated according to their respective values of α. This
approach again leads to the fibers associated with the echo-point classes and to a cloud of such
fibers for the whole fractal, which was termed muscle. As equation (5) just depends on α, and
no longer on the distinct values of r or l, each member of an echo-point class produces the
same fiber Gα(η), which is the general solution of the same differential equation we deduced
in [13]. The only way that Gα(η) can differ from the result of [13] is for the range of α values
to be different.
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Figure 5. The muscle created by the α values for random Koch curves are shown. The resulting
muscle shape is bounded by the fibers for α = αran

min and α = αran
max depicted by dashed lines. For

comparison, the outline of the muscle for a regular Koch curve is shown by its bounding fibers
depicted by solid lines.

As α has an upper and a lower bound, a plot of Gα(η) for different echo-point classes
α looks like a muscle too, where the top and bottom fibers are given by αmin and αmax,
respectively. For any given realization the different echo-point classes will have different
sizes; none the less, all points in one class with the same α will produce one single fiber.
Figure 5 shows the envelopes of the muscle shape Gα(η) created by the possible α values
produced by an ensemble of random Koch curves. The boundaries of the muscle are given by
Gα(η) for α = αran

min and α = αran
max respectively. Clearly, the muscle is larger than that of the

regular Koch curve itself.

6. Ensemble and realization-averaged G-density functions

For random Koch curves, a good option is to work with quantities averaged over the ensemble
of random Koch curves. This produces explicitly what the heuristic differential equations
were meant to produce: a differentiable averaged probability density function on the fractal.

What would a simple explicit averaging strategy be for a representative probability for
any particular point, at some time? One way would be to multiply the appropriate prefactor
by an ensemble average of G(η) for iteration depth M:

〈G(M)〉(η) = 1

Ne

∑
α∈
M

Gα(η), (6)

where 
M is the concatenation of γCM of the full ensemble �M and Ne is the number of
elements in 
M . However, with �M so large, even computing this ensemble directly is
problematic. But an alternative strategy is possible by successively building up a list of all
possible α values for a given �, while at the same time keeping track of the fraction w� of
realizations of random Koch curves in which these values occur. The method is based on the
fact that in constructing a random Koch curve in each iteration step, an L or R decision has to
be taken. An overlay of both decisions will give a diamond replacing the middle section of a
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Figure 6. A comparison between the realization-averaged G-density function of iteration depth
5 and of iteration depth 7 for a single realization of a random Koch curve to the ensemble-
averaged G-density function of iteration depths 1 (long dash) and 2 (short dash). Note that
already the ensemble-averaged G-density function of iteration depth 1 provides a very reasonable
approximation. The data for iteration depth 7 were shifted one unit to the right for better readability.

segment. In this way, all possible points of all possible realizations of a random Koch curve
are generated. Figure 4 shows this: the figure—up to few missing points—could as well be
generated by using a diamond generator instead of the L or R generator and then building up
the overlay. Thus, 〈G(M)〉(η) can be written as

〈G(M)〉(η) = 1

Ne

∑
α∈
M

Gα(η) =
∑

�

∑
α(�)

w�,α(�)Gα(�)(η). (7)

We note as an interesting side issue that echo points, i.e. points which echo each other in the
sense that their r and � values are obtained by multiplication with 3 and 4 respectively, have
the same w�,α(�).

We now introduce the realization average, which is the corresponding averaged G-density
function of iteration depth M for a single realization:

Ḡ(M)(η) = 1

Nc

∑
α∈γCM

G(M)
α (η), (8)

where Nc is the number of elements in γCM . Ḡ(M)(η) is motivated as above, but for a particular
realization only.

It is interesting to compare Ḡ(N)(η) to 〈G(M)〉(η) for the case where N > M . In figure 6
we considered N =5 and M =1, 2 and N = 7 and M = 1, 2. The comparison shows that the
ensemble-averaged G of iteration depth 2 (short dash) agrees very well with the realization-
averaged G of iteration depth 5. And even the ensemble-averaged G of iteration depth 1
(long dash) provides a reasonable approximation to the data from a single realization. The
comparison with the realization-averaged G of iteration depth 7 shows similar behavior. We
analyzed other iteration depths and again found the same behavior.

The surprising similarity of these curves, despite different realizations and different
iteration depths, arises because a random Koch curve of high enough iteration depth contains
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Figure 7. The probability P(r, t0 = 10 000). The data points (circles and squares) are determined
from an ensemble of 200 000 random walkers walking on two random Koch curves of iteration
depth 4 with transition probability w = 0.4. The solid curve is produced based on (5) by using the
ensemble-averaged G-density function 〈G(2)〉.

a good representation of the alpha spectrum of the full ensemble. The full ensemble produces
a fractal in its own right, which can be produced independently by the diamond generator.
The possible alpha values are thus limited by that fractal, making it easier to approximate the
whole with any sample. If some members of an echo class are missing because the curve has
folded in a way excluding them, only one member is necessary to generate a fiber.

Any of these averages with a suitable pre-factor will be a fairly robust smooth
representation of probability on the fractal. This estimate will not directly reflect the fractal-like
or specific stochastic nature of any one of these objects because of the averaging procedures.
This will also be true of the solutions of all heuristic differential equations. However, in our
case the nature of the average is explicit.

To demonstrate the applicability of these results, we use (5) for a comparison with the
probability P(r, t0) of walkers on a random Koch curve of iteration depth 4, which started at
the origin at time t = 0. The transition probability for a random walker to move one step
backward or forward was chosen as w = 0.4 and t0 = 10 000; for details, see [13]. Therefore,
we can compare the probability from the random walks with the approximation based on (5).
In figure 7, we show the random walk data for two different random Koch curves. The line
depicts P(r, t0) based on 〈G(2)〉. Note that P(r, t0) is the probability of finding a random
walker at a point on the random Koch curve, which is at distance r from the origin. The results
show that the approximation works quite well, even though one sees very well the deviations
of the random walk data due to the fractal nature of the Koch curve ensemble.

7. Conclusion

In this paper, we considered the problem of a random walker moving on a random Koch curve.
In a regular Koch curve, the chemical distance corresponds to a unique Euclidean distance, but
this is not necessary in the random case. The curve may fold back onto itself, permitting points
to fall onto each other. This is the first step in considering multiple connectedness for fractals
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such as the Sierpinski gasket. If we presume that concurrent points remain separate entities,
the curve remains one dimensional. This approach allows previous work to be applied directly
to random walks on random Koch curves: the time development can be completely separated
from the structural features of the fractal on which the walks take place. The transition to
the random Koch curve surprisingly only expands the previously discovered muscle for the
regular Koch curve. It does not alter it qualitatively. As a result, the original differential
equation for the fiber family continues to hold for the entire ensemble of random curves.

The corresponding ensemble of fibers implies a natural average to produce a direct
differentiable average probability. We directly apply the similarity group approach and
deal with the multivalued G-density. The resulting fibers are calculated explicitly using
the separation of time and space features.

For random Koch curves, the new concept of ensemble and realization-averaged G-
density functions is introduced. The self-similarity present in the random Koch curve is nicely
caught in the realization-averaged G-density functions studied. This quantity shows a strong
self-averaging tendency, which explains the similarity with the ensemble-averaged G-density
functions of low iteration depth and with the random walk data.

The results obtained can be easily generalized to any fractal that is topologically equivalent
to a straight line. The generalization to more complicated, especially lacunar, fractals is the
next step. The concept of fibers, clouds and echo points which was introduced in [14] for the
example of the Sierpinski gasket has proven its versatility also in the case of a random fractal.
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